35 research outputs found

    Many-Body Quantum Spin Dynamics with Monte Carlo Trajectories on a Discrete Phase Space

    Full text link
    Interacting spin systems are of fundamental relevance in different areas of physics, as well as in quantum information science, and biology. These spin models represent the simplest, yet not fully understood, manifestation of quantum many-body systems. An important outstanding problem is the efficient numerical computation of dynamics in large spin systems. Here we propose a new semiclassical method to study many-body spin dynamics in generic spin lattice models. The method is based on a discrete Monte Carlo sampling in phase-space in the framework of the so-called truncated Wigner approximation. Comparisons with analytical and numerically exact calculations demonstrate the power of the technique. They show that it correctly reproduces the dynamics of one- and two-point correlations and spin squeezing at short times, thus capturing entanglement. Our results open the possibility to study the quantum dynamics accessible to recent experiments in regimes where other numerical methods are inapplicable.Comment: 8 pages, 6 figure

    A generalized phase space approach for solving quantum spin dynamics

    Full text link
    Numerical techniques to efficiently model out-of-equilibrium dynamics in interacting quantum many-body systems are key for advancing our capability to harness and understand complex quantum matter. Here we propose a new numerical approach which we refer to as GDTWA. It is based on a discrete semi-classical phase-space sampling and allows to investigate quantum dynamics in lattice spin systems with arbitrary S≥1/2S\geq 1/2. We show that the GDTWA can accurately simulate dynamics of large ensembles in arbitrary dimensions. We apply it for S>1/2S>1/2 spin-models with dipolar long-range interactions, a scenario arising in recent experiments with magnetic atoms. We show that the method can capture beyond mean-field effects, not only at short times, but it also correctly reproduces long time quantum-thermalization dynamics. We benchmark the method with exact diagonalization in small systems, with perturbation theory for short times, and with analytical predictions made for closed system which feature quantum-thermalization at long times. By computing the Renyi entropy, currently an experimentally accessible quantifier of entanglement, we reveal that large SS systems can feature larger entanglement than corresponding S=1/2S=1/2 systems. Our analyses demonstrate that the GDTWA can be a powerful tool for modeling complex spin dynamics in regimes where other state-of-the art numerical methods fail

    Cavity enhanced transport of excitons

    Full text link
    We show that exciton-type transport in certain materials can be dramatically modified by their inclusion in an optical cavity: the modification of the electromagnetic vacuum mode structure introduced by the cavity leads to transport via delocalized polariton modes rather than through tunneling processes in the material itself. This can help overcome exponential suppression of transmission properties as a function of the system size in the case of disorder and other imperfections. We exemplify massive improvement of transmission for excitonic wave-packets through a cavity, as well as enhancement of steady-state exciton currents under incoherent pumping. These results may have implications for experiments of exciton transport in disordered organic materials. We propose that the basic phenomena can be observed in quantum simulators made of Rydberg atoms, cold molecules in optical lattices, as well as in experiments with trapped ions.Comment: 10 pages, 7 figures, [v2]: Updated reference to complementary work arXiv:1409.2514, [v3]: Update to version accepted for publicatio

    Thermalization of strongly interacting bosons after spontaneous emissions in optical lattices

    Full text link
    We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical lattice, after the ground-state is excited by a single spontaneous emission event, i.e. after an absorption and re-emission of a lattice photon. This is an important fundamental source of decoherence for current experiments, and understanding the resulting dynamics and changes in the many-body state is important for controlling heating in quantum simulators. Previously it was found that in the superfluid regime, simple observables relax to values that can be described by a thermal distribution on experimental time-scales, and that this breaks down for strong interactions (in the Mott insulator regime). Here we expand on this result, investigating the relaxation of the momentum distribution as a function of time, and discussing the relationship to eigenstate thermalization. For the strongly interacting limit, we provide an analytical analysis for the behavior of the system, based on an effective low-energy Hamiltonian in which the dynamics can be understood based on correlated doublon-holon pairs.Comment: 8 pages, 5 figure

    Light scattering and dissipative dynamics of many fermionic atoms in an optical lattice

    Get PDF
    We investigate the many-body dissipative dynamics of fermionic atoms in an optical lattice in the presence of incoherent light scattering. Deriving and solving a master equation to describe this process microscopically for many particles, we observe contrasting behaviour in terms of the robustness against this type of heating for different many-body states. In particular, we find that the magnetic correlations exhibited by a two-component gas in the Mott insulating phase should be particularly robust against decoherence from light scattering, because the decoherence in the lowest band is suppressed by a larger factor than the timescales for effective superexchange interactions that drive coherent dynamics. Furthermore, the derived formalism naturally generalizes to analogous states with SU(N) symmetry. In contrast, for typical atomic and laser parameters, two-particle correlation functions describing bound dimers for strong attractive interactions exhibit superradiant effects due to the indistinguishability of off-resonant photons scattered by atoms in different internal states. This leads to rapid decay of correlations describing off-diagonal long-range order for these states. Our predictions should be directly measurable in ongoing experiments, providing a basis for characterising and controlling heating processes in quantum simulation with fermions.Comment: 18 pages, 7 figure

    Local density of states on a vibrational quantum dot out of equilibrium

    Full text link
    We calculate the nonequilibrium local density of states on a vibrational quantum dot coupled to two electrodes at T=0 using a numerically exact diagrammatic Monte Carlo method. Our focus is on the interplay between the electron-phonon interaction strength and the bias voltage. We find that the spectral density exhibits a significant voltage dependence if the voltage window includes one or more phonon sidebands. A comparison with well-established approximate approaches indicates that this effect could be attributed to the nonequilibrium distribution of the phonons. Moreover, we discuss the long transient dynamics caused by the electron-phonon coupling.Comment: 9 pages, 11 figure

    Dressed, noise- or disorder- resilient optical lattices

    Full text link
    External noise is inherent in any quantum system, and can have especially strong effects for systems exhibiting sensitive many-body phenomena. We show how a dressed lattice scheme can provide control over certain types of noise for atomic quantum gases in the lowest band of an optical lattice, removing the effects of lattice amplitude noise to first order for particular choices of the dressing field parameters. We investigate the non-equilibrium many-body dynamics for bosons and fermions induced by noise away from this parameter regime, and also show how the same technique can be used to reduce spatial disorder in projected lattice potentials.Comment: 4+ Pages, 4 Figure

    Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics

    Full text link
    We study the interplay between charge transport and light-matter interactions in a confined geometry, by considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of non-equilibrium Green's functions and numerical simulations of the quantum master equation, and derive both analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are transfered to the lower one, giving rise to a delocalized state along the chain. Conversely, in the dissipative regime with low cavity quality factors, we find that the current enhancement is due to a collective decay of populations from the upper to the lower band.Comment: 52 pages, 11 figure
    corecore